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van der Waals–Tonks-type equations of state for hard-disk and hard-sphere fluids
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Using the known virial coefficients of hard-disk and hard-sphere fluids, we develop van der Waals–Tonks–
type equations of state for hard-disk and hard-sphere fluids. In the low-density fluid regime, these equations of
state are in good agreement with the simulation results and the existing equations of state.
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I. INTRODUCTION

The short-range repulsive interaction between particle
responsible for the occurrence of the first-order liquid-so
phase transition. The simplest such models are the hard-
and hard-sphere models, which have merely excluded
~volume! interactions@1–3#. There exists a long history o
studying these hard-core models. As early as 1936, Tonks@4#
solved exactly the one-dimensional hard rod model a
found its equation of state to beP(L2Nd)5NkBT. Hered
is the length of a hard rod. It is well known that an exa
solution exists only for one dimension.

The van der Waals equation of state is the simplest eq
tion of state that exhibits the gas-liquid phase transiti
which historically proceeded the development of the kine
theory of molecules and the theory of phase transition.
recent years, in order to make it work better at high densit
some researchers@5,6# modified the excluded volume term i
the van der Waals equation. Recently, Eu and Rah@7# have
proposed a generic van der Waals equation of state for a
with the potential made up of a repulsive and an attrac
part by using the virial equation of state. One may raise
interesting question: Does the van der Waals–Tonks–t
equation of state exist for hard-disk and hard-sphere flu
In this paper, we will answer this question.

This paper is organized as follows. In Secs. II and III, t
van der Waals–Tonks–type equations of state for a hard-
fluid and for a hard-sphere fluid are derived, respectively
Sec. IV, a summary of this paper is given.

II. HARD-DISK FLUIDS

The virial expansion is

Ps

kBT
511B2 /s1B3 /s21•••1Bn11 /sn1•••

511B28~B2 /s!1B38~B2 /s!2

1•••1Bn118 ~B2 /s!n1•••, ~1!

where s is the area per disk,Bn118 5Bn11 /B2
n . The virial

coefficients are known up toB7 @8#: B25pd2/2, B2851,
B3854/32A3/p50.782 004 4, B485224.5(A3/p)110/p2

50.532 231 8,B5850.333 556 1,B6850.198 93,B7850.1148.
Hered is the diameter of a hard disk.
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Using the virial coefficients, Ree and Hoover~RH! @9#
developed a Pade´ approximation to the equation of state

Ps

kBT
511S B2

s D 120.196 703~B2 /s!10.006 519~B2 /s!2

120.978 703~B2 /s!10.239 465~B2 /s!2 .

~2!

By modifying the equation of state of scaled-particle theo
empirically, Henderson@10,11# obtained a very accurat
equation of state,

Ps

kBT
5

11y2/8

~12y!2 , ~3!

wherey5pd2/4s.
The close-packing limit is that fors.s0, as s→s0, the

pressure approaches infinity. Heres05A3d2/2 is the close-
packing area per disk. We note that none of the above eq
tions of state for a hard-disk fluid gives the close-pack
limit.

By observing B38/B2851/1.278 77, B48/B3851/1.469 29,
B58/B4851/1.595 63, B68/B5851/1.676 75, and B78/B68
51/1.732 84, we find that the largern becomes, the neare
Bn118 /Bn8 comes to a limitA3/p51/1.813 80, i.e.,

lim
n→`

Bn118 /Bn85A3/p51/1.813 80. ~4!

The condition of convergence of the virial series Eq.~1! is

lim
n→`

~Bn118 /Bn8!~B2 /s!,1. ~5!

Substitution of Eq.~4! into Eq. ~5! gives s.s0, which
indicates that the limit Eq.~4! is relevant to the close
packing limit. Equation~4! suggests the following equatio
of state:

Ps

kBT
511C2S B2

s D1C3S B2

s D 2

1•••1Cn11S B2

s D n

1•••1D
s0 /s

12s0 /s
, ~6!

whereD,C2 , . . . are constants to be determined. By pro
erly choosing the value ofD, we find that asn becomes
larger and larger,Cn becomes smaller and smaller. HenceCn
may be neglected forn large enough. The result is
©2002 The American Physical Society03-1



e

I.

o
an

io
et

is
8
y
o
l

act
rd-
m
re

nt
a
rson

me.
-

XIAN ZHI WANG PHYSICAL REVIEW E 66, 031203 ~2002!
F Ps

kBT
13.087 6811.253 66S B2

s D
10.460 51S B2

s D 2

10.152 797S B2

s D 3

10.044 12S B2

s D 4

10.009 29S B2

s D 5G~12s0 /s!

54.087 68. ~7!

The virial coefficients given by the RH equation, th
Henderson equation, and Eq.~7! are listed in Table I. The
calculated values and the simulation values@9,12# of
Pv/kBT in the low-density fluid regime are listed in Table I
The equations of state are shown in Fig. 1~a!. We see that in
the low-density fluid regime, our equation of state is in go
agreement with the simulation results, the RH equation,
the Henderson equation.

As the density becomes high enough (s0 /s.0.761), the
hard-disk system undergoes a fluid-solid phase transit
The equation of state splits into two branches, i.e., the m
stable branch and the stable branch@14,15#. The stable
branch is composed of two parts, i.e., the fluid-solid coex
ence part (0.761,s0 /s,0.798) and the solid part (0.79
,s0 /s,1). From Fig. 1~b!, we see that in the high-densit
regime, Eq.~7! does not agree with the simulation results
the stable branch@9,12–14#. The reason is that the viria
expansion is only valid in the low-density regime.

TABLE I. The virial coefficientsBn8 for a hard-disk fluid.

Bn8 Exact Wang RH Henderson

B28 1 1 1 1
B38 0.782 00 0.782 00 0.782 0.781 25
B48 0.532 23 0.532 23 0.5324 0.531 25
B58 0.333 56 0.333 56 0.3338 0.335 94
B68 0.198 93 0.198 93 0.1992 0.203 13
B78 0.1148 0.1148 0.115 02 0.119 14
B88 0.063 293 0.064 873 0.068 359
B98 0.034 895 0.035 947 0.038 574

TABLE II. Values of Ps/kBT for a hard-disk fluid.

s/s0 Exact Wang RH Henderson

1.312 10.13 10.8765 10.7832 11.1157
1.40 8.25 8.3315 8.3123 8.4838
1.45 7.47 7.3594 7.3536 7.4767
1.50 6.67 6.5976 6.5979 6.6885
1.55 6.08 5.9866 5.9895 6.0577
1.60 5.56 5.4870 5.4909 5.5430
1.65 5.13 5.0718 5.0759 5.1165
1.70 4.76 4.7221 4.7260 4.7580
1.80 4.24 4.1673 4.1704 4.1909
1.90 3.78 3.7485 3.7508 3.7646
2.00 3.39 3.4225 3.4242 3.4337
03120
d
d

n.
a-
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III. HARD-SPHERE FLUIDS

The virial expansion is

Pv
kBT

511
B2

v
1

B3

v2 1•••1
Bn11

vn 1•••

511B28S B2

v D1B38S B2

v D 2

1•••1Bn118 S B2

v D n

1•••,

~8!

where v5V/N is the volume per sphere andBn118
5Bn11 /B2

n . The virial coefficients are known up toB10 @8#:
B254pd3/6, B2851, B3850.625, B4850.28695, B58
50.11025, B6850.0389, B7850.0137, B8850.004 45, B98
50.001 50, andB108 50.000 51. Hered is the diameter of a
hard sphere.

Although no exact solution exists, there exists an ex
solution of the Percus-Yevick integration equation for a ha
sphere fluid@16,17#. Two equations of states obtained fro
the compressibility equation and from the virial equation a

Pv
kBT

5
11y1y2

~12y!3 ~9!

FIG. 1. Equation of state in thePs/kBT-s0 /s plane for a hard-
disk system.~a! The low-density fluid regime. The dots represe
the simulation results@9,12#. The curves marked by a solid line,
short dashed line, and a long dashed line represent the Hende
equation, the RH equation, and Eq.~7!, respectively.~b! The fluid
regime, the fluid-solid coexistence regime, and the solid regi
The solid curve represents Eq.~7!. The dots represent the simula
tion results@9,12–14#.
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and

Pv
kBT

5
112y13y2

~12y!2 , ~10!

wherey5pd3/6v.
Based on the virial coefficients, Carnahan and Starl

~CS! @18# developed a Pade´ approximation to the equation o
state

Pv
kBT

5
11y1y22y3

~12y!3 . ~11!

It is obtained by taking a (1/3:2/3) average of the vir
pressure Eq.~10! and the compressibility pressure Eq.~9!.

Using the virial coefficients, Ree and Hoover~RH! @9#
developed a Pade´ approximation to the equation of state,

Pv
kBT

511S B2

v D110.063 507~B2 /v !10.017 329~B2 /v !2

120.561 493~B2 /v !10.081 313~B2 /v !2 .

~12!

The close-packing limit is that forv.v0, asv→v0, the
pressure goes to infinity. Herev05d3/A2 is the close-

TABLE III. The virial coefficientsBn8 for a hard-sphere fluid.

Bn8 Exact Wang RH CS

B28 1 1 1 1
B38 0.625 0.625 0.625 0.625
B48 0.286 95 0.286 95 0.286 95 0.281 25
B58 0.110 25 0.110 25 0.1103 0.1094
B68 0.0389 0.038 95 0.0386 0.039 06
B78 0.0137 0.0137 0.0127 0.013 18
B88 0.004 45 0.004 44 0.0040 0.004 27
B98 0.001 50 0.001 50 0.001 21 0.001 34
B108 0.000 51 0.000 506 0.000 35 0.000 41

TABLE IV. Values Pv/kBT for a hard-sphere fluid.

v0 /v Exact Wang RH CS

0.10 1.36 1.3594 1.3594 1.3593
0.141 42 1.55 1.5536 1.5536 1.5532
0.212 13 1.97 1.9682 1.9682 1.9667
0.282 84 2.52 2.5219 2.5213 2.5180
0.333 33 3.05 3.0326 3.0307 3.0256
0.353 55 3.26 3.2711 3.2682 3.2624
0.424 26 4.28 4.3018 4.2906 4.2834
0.494 97 5.70 5.7504 5.7135 5.7102
0.50 5.89 5.8744 5.8344 5.8318
0.565 69 7.78 7.8445 7.7319 7.7500
0.588 23 8.59 8.7066 8.5472 8.5794
0.625 10.17 10.3876 10.1079 10.1780
0.636 40 10.74 10.9921 10.6593 10.746
0.650 54 11.60 11.8073 11.3944 11.506
03120
g

l

packing volume per sphere. We note that none of the ab
equations of state for a hard-sphere fluid gives the clo
packing limit.

By observingB38/B2851/1.6, B48/B3851/2.178 08,B58/B48
51/2.602 72, B68/B5851/2.834 19, B78/B6851/2.839 416,
B88/B7851/3.078 65, B98/B8851/2.966 67, and B108 /B98
51/2.941 18, we find that there exists a tendency that
larger n becomes, the nearerBn118 /Bn8 comes to a limit
3/2pA251/2.961 92, i.e.,

lim
n→`

Bn118 /Bn853/2pA251/2.961 92. ~13!

The condition of convergence of the virial series Eq.~8! is

lim
n→`

~Bn118 /Bn8!~B2 /v !,1. ~14!

Combination of Eqs.~13! and ~14! gives v.v0, which
indicates that the limit Eq.~13! is relevant to the close
packing limit. Equation~13! suggests the following equatio
of state:

FIG. 2. Equation of state in thePv/kBT-v0 /v plane for a hard-
sphere system.~a! The low-density fluid regime. The dots represe
the simulation results@9,12,19#. The curves marked by a solid line
a short dashed line, and a long dashed line represent the CS e
tion, the RH equation, and Eq.~16!, respectively.~b! The fluid
regime, the metastable regime, the fluid-solid coexistence reg
and the solid regime. The solid curve represents Eq.~16!. The dots
represent the simulation results@3,9,12,14,19#.
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Pv
kBT

511C2S B2

v D1C3S B2

v D 2

1•••1Cn11S B2

v D n

1•••1D
v0 /v

12v0 /v
, ~15!

whereD,C2 , . . . are constants to be determined. By pro
erly choosing the value ofD, we find that asn becomes
larger and larger,Cn becomes smaller and smaller. HenceCn
may be neglected forn large enough. The result is

F Pv
kBT

17.885412.0S B2

v D10.387 86S B2

v D 2

10.055S B2

v D 3

10.0052S B2

v D 4

20.0005S B2

v D 6G~12v0 /v !58.8854.

~16!

The virial coefficients given by the RH equation, the C
equation, and Eq.~16! are listed in Table III. The CS equa
tion gives B6850.039 06 while Refs.@8,11# gave a wrong
resultB6850.0156 for the CS equation. The calculated valu
and the simulation values@9,12,19# of Pv/kBT in the low-
density fluid regime are listed in Table IV. The equations
state are shown in Fig. 2~a!. We see that in the low-densit
fluid regime, our equation of state is in good agreement w
the simulation results, the RH equation, and the CS equa

As the density becomes high enough (v0 /v.0.667), the
hard-sphere system undergoes a fluid-solid phase trans
The equation of state splits into two branches, i.e., the m
stable branch (0.667,v0 /v,0.8754)@20,21# and the stable
v

e

s

03120
-

s

f

h
n.

n.
a-

branch@14,22#. The stable branch is composed of two par
i.e., the fluid-solid coexistence part (0.667,v0 /v,0.736)
and the solid part (0.736,v0 /v,1). From Fig. 2~b!, we see
that in the high-density regime, Eq.~16! does not agree with
the simulation results of the metastable branch and the st
branch@3#. The reason is that the virial expansion is on
valid in the low-density regime.

IV. CONCLUSION

We observe that for hard-disk and hard-sphere fluids, an
becomes large enough,Bn118 /Bn8 approaches a limit that is
relevant to the close-packing limit. This reflects the fact th
the interaction is merely an excluded volume effect a
hence the models have a purely geometric character@1,3#.
Indeed, the central idea of ‘‘scaled particle theory’’ and ‘‘st
tistical geometry’’@2# is also that the thermodynamic prop
erties of hard-sphere systems are dominated by the
straints of geometry. Using our observation, we deve
accurate van der Waals–Tonks–type equations of st
which reproduce the known virial coefficients and also g
the close-packing limit. In the low-density fluid regime, o
equations of state are in good agreement with the simula
results and the existing equations of state. These equa
are useful as a guide when treating more complicated po
tials.
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