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van der Waals-Tonks-type equations of state for hard-disk and hard-sphere fluids
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Using the known virial coefficients of hard-disk and hard-sphere fluids, we develop van der Waals—Tonks—
type equations of state for hard-disk and hard-sphere fluids. In the low-density fluid regime, these equations of
state are in good agreement with the simulation results and the existing equations of state.
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I. INTRODUCTION Using the virial coefficients, Ree and HoovéRH) [9]
developed a Padapproximation to the equation of state
The short-range repulsive interaction between particles is
responsible for the occurrence of the first-order liquid-solid PS _ . (Bz|1—0.196 708B,/s)+0.006 519B,/s)
phase transition. The simplest such models are the hard-diskgT s/ 1—0.978708B,/s)+0.239 465B,/s)*"
and hard-sphere models, which have merely excluded area (2)
(volume interactions[1-3]. There exists a long history of o ) )
studying these hard-core models. As early as 1936, Tptks By rr_1c_)d|fy|ng the equation of state pf scaled-particle theory
solved exactly the one-dimensional hard rod model an@Mpirically, Hendersor{10,11] obtained a very accurate
found its equation of state to H(L —Nd)=NksT. Hered  €quation of state,
is the length of a hard rod. It is well known that an exact Ps  1+v2/8
solution exists only for one dimension. il _y2 3)
The van der Waals equation of state is the simplest equa- keT (1-y)~’
tion of state that exhibits the gas-liquid phase transition, 5
which historically proceeded the development of the kineticVherey=m=d4s.
theory of molecules and the theory of phase transition. In 1€ close-packing limit is that f°$>502v ass—s,, the
recent years, in order to make it work better at high densities?ressure approaches infinity. Hesg= V/3d%2 is the close-
some researchef$,6] modified the excluded volume term in Packing area per disk. We note that none of the above equa-
the van der Waals equation. Recently, Eu and Rithave  tions of state for a hard-disk fluid gives the close-packing
proposed a generic van der Waals equation of state for a fluitmit.
with the potential made up of a repulsive and an attractive By observing By/B;=1/1.27877, B,/B;=1/1.469 29,
part by using the virial equation of state. One may raise af3s/B;=1/1.59563, B¢/B;=1/1.67675, and B;/Bg
interesting question: Does the van der Waals—Tonks—type 1/1.732 84, we find that the largerbecomes, the nearer
equation of state exist for hard-disk and hard-sphere fluidsB/ ., ,/B/, comes to a limit/3/7=1/1.813 80, i.e.,
In this paper, we will answer this question.
This paper is organized as follows. In Secs. Il and I, the limB!, ,/B.=\/3/7=1/1.81380. (4)
van der Waals—Tonks—type equations of state for a hard-disk n—e
fluid and for a hard-sphere fluid are derived, respectively. In
Sec. IV, a summary of this paper is given.

The condition of convergence of the virial series E.is

lim (B}, /B;)(By/s)<1. (5)
Il. HARD-DISK FLUIDS n—o
The virial expansion is Substitution of Eq.(4) into Eq. (5) gives s>s,, which

indicates that the limit Eq(4) is relevant to the close-
packing limit. Equation(4) suggests the following equation

Ps ) . '
I<B_T:1+BZ/S+B3/S +. +Bpp /S of state:
_ ' ’ 2 Ps BZ BZ 2 BZ n
—14B}(B,/5)+ BY(B, /9 R L T |
+. 4B (By/s) "+, 1
n+1(B2/9) 1 s sos )
T T 1-gyls’ ©)

wheress is the area per diskB/_ ;=B .,/B5. The virial

coefficients are known up t@; [8]: B,=7d*/2, B,=1, whereD,C,, ... are constants to be determined. By prop-
B;=4/3—/3/m=0.782004 4, B,=2—4.5(3/m)+10/7>  erly choosing the value ob, we find that asn becomes
=0.5322318B;=0.333556 1B;=0.19893,B,=0.1148.  larger and largeiC,, becomes smaller and smaller. Her@@g
Hered is the diameter of a hard disk. may be neglected fan large enough. The result is
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TABLE I. The virial coefficientsB;, for a hard-disk fluid. Pressure disk a
]
B, Exact Wang RH Henderson 70 !
60
B, 1 1 1 1 5o
B, 0.78200 0.78200 0.782 0.78125
B, 0.53223 0.53223 0.5324 0.53125 40
Bs 0.33356 0.33356 0.3338 0.33594 30
Bg 0.198 93 0.19893 0.1992 0.20313 20
B 0.1148 0.1148 0.11502 0.119 14 10
Bg 0.063293 0.064 873 0.068 359 )
, Density
BS 0.034 895 0.035 947 0.038574 (@)
Pressure disk b
P 1 3.08768 125366 2 "
ket 72 293085 60
50
B,\2 B,\3 B,\4
+0.4605 < +0.15279 < +0.0441 ’ 40
30
B,\°
+0.0092 < (1—sy/s) 20
10
=4.087 68. (7) ) Density

The virial coefficients given by the RH equation, the
Henderson equation, and E() are listed in Table I. The dis
calculatgd values a”O_' the. S'm%“at'on ‘_’a'“@jlz] of the simulation result§9,12]. The curves marked by a solid line, a
Pu/kgT in the low-density fluid regime are listed in Table Il. gpqt gashed line, and a long dashed line represent the Henderson
The equations of state are shown in Fige)1We see thatin  equation, the RH equation, and @), respectively(b) The fluid
the low-density fluid regime, our equation of state is in goodregime, the fluid-solid coexistence regime, and the solid regime.
agreement with the simulation results, the RH equation, angthe solid curve represents E). The dots represent the simula-

FIG. 1. Equation of state in thBs/kgT-sy/s plane for a hard-
k system(a) The low-density fluid regime. The dots represent

the Henderson equation. tion results[9,12—14.
As the density becomes high enougy (s>0.761), the
hard-disk system undergoes a fluid-solid phase transition. . HARD-SPHERE FLUIDS
The equation of state splits into two branches, i.e., the meta- - o
stable branch and the stable branic,15. The stable The virial expansion is
branch is composed of two parts, i.e., the fluid-solid coexist-
ence part (0.76€s,/s<0.798) and the solid part (0.798 Puv B, Bj Bni1
<sp/s<1). From Fig. 1b), we see that in the high-density  j_T ~ ty Tttt n

regime, Eq.(7) does not agree with the simulation results of

the stable branctj9,12—14. The reason is that the virial 14 B> B! B,\? B/ B,\"

expansion is only valid in the low-density regime. =1+Bs ) 183 v to B v e
TABLE 1. Values of Ps/ksT for a hard-disk fluid. ®

slsg Exact Wang RH Henderson where v=V/N is the volume per sphere an®,,

=B, 1/Bj. The virial coefficients are known up ®,,[8]:

1.312 10.13 10.8765 10.7832 11.1157
1.40 8.95 8.3315 8.3123 8.4838 B,=4wd%6, B,=1, B;=0.625 B,=0.28695, B,
1.45 7.47 7.3594 7.3536 74767 011025, Bg=0.0389, B;=0.0137, B3=0.00445, By
150 6.67 6.5976 6.5979 6.6885 rTOdOOthO’ and;,=0.00051. Herdl is the diameter of a
155 6.08 5.9866 5.9895 6.0577 arAltf]p erhe' ¢ soluti sts. th - t
1.60 5.56 5.4870 5.4909 5.5430 though no exact solution exists, tnere exists an exac
solution of the Percus-Yevick integration equation for a hard-
1.65 5.13 5.0718 5.0759 5.1165 . . .
170 176 47221 4.7260 4.7580 sphere ﬂwd[lﬁ,_lj. Two equations of states obtained from
: : ' : : the compressibility equation and from the virial equation are
1.80 4.24 4.1673 4.1704 4.1909
1.90 3.78 3.7485 3.7508 3.7646 p 14yty2
2.00 3.39 3.4225 3.4242 3.4337 v _ YTy ©)
keT ~ (1-y)°
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TABLE Ill. The virial coefficientsB;, for a hard-sphere fluid. Pressure sphere a
B, Exact Wang RH Cs 40
B 1 1 1 1 120
Bs 0.625 0.625 0.625 0.625
B, 0.286 95 0.286 95 0.286 95 0.281 25 20
B; 0.11025 0.11025 0.1103 0.1094
Bg 0.0389 0.038 95 0.0386 0.039 06 10
B’ 0.0137 0.0137 0.0127 0.01318
Bg 0.004 45 0.004 44 0.0040 0.004 27 .
Density
B} 0.001 50 0.001 50 0.00121 0.00134 (@
Bio 0.00051 0.000 506 0.000 35 0.00041
Pressure sphere b
100
and
80
Pv 1+2y+3y? co
T (197 1o
40
wherey = 7d*/6v.
Based on the virial coefficients, Carnahan and Starling 20
(CS) [18] developed a Padapproximation to the equation of
state () 0 Density
Pv 1+y+y?—y3 FIG. 2. Equation of state in thev/kgT-v,/v plane for a hard-
kB_T = W (12) sphere systen{a) The low-density fluid regime. The dots represent

the simulation resultf9,12,19. The curves marked by a solid line,

a short dashed line, and a long dashed line represent the CS equa-
tion, the RH equation, and Ed16), respectively.(b) The fluid
regime, the metastable regime, the fluid-solid coexistence regime,
and the solid regime. The solid curve represents(E6). The dots
represent the simulation resul3,9,12,14,19

It is obtained by taking a (1/3:2/3) average of the virial
pressure Eq(10) and the compressibility pressure Ef).

Using the virial coefficients, Ree and HoovéRH) [9]
developed a Padapproximation to the equation of state,

Py B, 1+0.063507B,/v)+0.017 3298, /v)? e vl re. We note that e ab
=14 = | — 5. packing volume per sphere. We note that none of the above
keT v /1-0.5614988,/v)+0.081 31382/0)(12) equations of state for a hard-sphere fluid gives the close-
packing limit.
The close-packing limit is that fas>v,, asv—uvg, the By observingBs/B,=1/1.6, B,/B;=1/2.178 08,B¢/B,

pressure goes to infinity. Here,=d+2 is the close- - 1/2:60272, Be/Bs=1/2.83419, B7/Bg=1/2.839416,
B,/B,=1/3.07865, BY/B,=1/2.96667, and B)/B)

TABLE IV. Values Pu/kgT for a hard-sphere fluid. =1/2.94118, we find that there exists a tendency that the
larger n becomes, the neareB/,,/B; comes to a limit
volv Exact Wang RH CS 3/277\/52 1/2.96192, i.e.,
0.10 1.36 1.3594 1.3594 1.3593
0.141 42 1.55 1.5536 1.5536 1.5532 limB,_,/B= 3/2m\/2=1/2.96192. (13
0.21213 1.97 1.9682 1.9682 1.9667 n—oo
0.282 84 2.52 2.5219 2.5213 2.5180
0.33333 3.05 3.0326 3.0307 3.0256 - N . _
0.35355 3.26 3.2711 3.2682 3.2624 The condition of convergence of the virial series EB;JS
0.424 26 4.28 4.3018 4.2906 4.2834
0.494 97 5.70 5.7504 5.7135 5.7102 . ' ’
lim(B/,,/B))(B,/v)<1. 14
0.50 5.89 5.8744 5.8344 5.8318 n%( n+1/Bn)(B2/v) (14
0.565 69 7.78 7.8445 7.7319 7.7500
0.588 23 8.59 8.7066 8.5472 8.5794
0.625 10.17 10.3876 10.1079 10.1780 Combination of Eqs(13) and (14) givesv>wv,, which
0.636 40 10.74 10.9921 10.6593 10.7461 indicates that the limit Eq(13) is relevant to the close-
0.650 54 11.60 11.8073 11.3944 11.5064 packing limit. Equation(13) suggests the following equation
of state:
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Pu B, B,\? B,\" branch[14,22. The stable branch is composed of two parts,
I(B_T:1+ Co| 57| +Cal o) £ F n+1(7) i.e., the fluid-solid coexistence part (0.66%/v<0.736)
and the solid part (0.736v/v<<1). From Fig. 2Zb), we see
volv that in the high-density regime, E(L6) does not agree with
oot Dm’ (15 the simulation results of the metastable branch and the stable
0 branch[3]. The reason is that the virial expansion is only
whereD,C,, ... are constants to be determined. By prop-valid in the low-density regime.

erly choosing the value ob, we find that asn becomes
larger and largeiC, becomes smaller and smalle_r. Her@e V. CONCLUSION
may be neglected fan large enough. The result is
) 3 We observe that for hard-disk and hard-sphere fluids, as
E<BZ) becomes large enougB,,, /B, approaches a limit that is
+0.058 — n+1'Pn
v relevant to the close-packing limit. This reflects the fact that
B4 B.\6 the interaction is merely an excluded volume effect and
+0_0052< _2) _0.0005<_2) }(1—00/1;):8.8854. hence the models have a purely geometric charddi@.
v v Indeed, the central idea of “scaled particle theory” and “sta-
(16) tistical geometry”[2] is also that the thermodynamic prop-
erties of hard-sphere systems are dominated by the con-
The virial coefficients given by the RH equation, the CSstraints of geometry. Using our observation, we develop
equation, and Eq16) are listed in Table lll. The CS equa- accurate van der Waals—Tonks—type equations of state,
tion gives B;=0.03906 while Refs[8,11] gave a wrong which reproduce the known virial coefficients and also give
resultB;=0.0156 for the CS equation. The calculated valueghe close-packing limit. In the low-density fluid regime, our
and the simulation valud®,12,19 of Pu/kgT in the low-  equations of state are in good agreement with the simulation
density fluid regime are listed in Table IV. The equations offésults and the existing equations of state. These equations
state are shown in Fig.(8. We see that in the low-density are useful as a guide when treating more complicated poten-
fluid regime, our equation of state is in good agreement witHials.
the simulation results, the RH equation, and the CS equation.
As the density becomes high enogg}b(y>0.667), the' ' ACKNOWLEDGMENT
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Puv Bz BZ
——+7.8854+ 2. . +0.3878 >

kgT
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